fehérjeszerkezet A fehérjék szerkezetében négyféle szerkezeti szintet (elsődleges, másodlagos, harmadlagos és negyedleges) különböztetünk meg. Ez kiegészül a második és a harmadik szint közötti két másodfeletti elemmel (gomoly, mintázat). Mindegyik szintet az aminosavak sora határozza meg.

elsődleges szerkezet a peptidkötéssel kapcsolt aminosavmaradék-sor. Voltaképpen a polipeptid. Az átlagos fehérje 300–400 aminosav-maradékból áll, tömege: ~40 kDa. Van 50 és 2000 aminosav-maradékból összetevődő is, a fehérjék aminosav-maradék tartománya tehát: 50–2000 aminosav-maradék.

másodlagos szerkezet az aminosavsor elfordulásaiból keletkező alakzat, amelyet az egymáshoz közel kerülő atomok közt kialakuló hidrogénkötések rögzítenek. Hidrogénhíd keletkezik a peptidkötés O- és N-atomja között; ez könnyen kialakul az oxigén és a nitrogén részleges ellentétes töltése miatt. A másodlagos kapcsolódások tehát a polipeptid gerincében jönnek létre, az aminosavak oldalláncai nem vesznek részt benne.

Elfordulás az aminosavak oldalláncainak különbözősége (kiegyensúlyozatlan állapot) révén következik be, és a peptidkötés elektroneltolódása miatt csak az α-szénatom kétoldali kötésében lehetséges, ezek szigma-kötések. Az N–Cα kötés elfordulásának szöge a φ-szög, Cα–C kötésé a ψ-szög (→peptidkötés). A φ–ψ szögpárok által létrehozott térhelyzetben az N–Cα–C–N atomsorból szabályosan ismétlődő szerkezetek jönnek létre; ezek a másodlagos szerkezetek. Kialakulásuk a szögpárok értékeitől függ; azokat az értékeket, amelyeknél kialakulhatnak, a Ramachandra-leképezés mutatja. A szögpár nagysága azonban a peptidkötések atomjai és az oldalláncok helyzete miatt behatárolt; a másodlagos szerkezetek létrejöttéhez szükséges értékek a polipeptidnek csak egyes részein (elfordulási sziget) jönnek létre, függően az aminosavsortól: attól, hogy milyen aminosavak kapcsolódnak egymással.

A legjellegzetesebb másodlagos szerkezeti elemek az α-csavar, a β-lemez és a β-fordulat.

képα-csavarodás (α-helix) a peptidlánc csavarvonalszerű elfordulásával keletkezik. Egy menetben 3,6 aminosav-maradék van. A peptidkötések közötti hidrogénhidak szabályos távolságonként ismétlődnek – minden negyedik peptidkötést kapcsolják a karbonil- és az NH-csoport között (CO…NH) –, és a molekula hossztengelyével csaknem párhuzamosan helyezkednek el; ezért keletkezik a csavarvonal szerkezet. Az aminosavak oldalláncai a hossztengelyre merőlegesen, a csavarmenet külső felszínén találhatók, a víztaszító gerinc pedig a belsejében. Az órajárás irányában haladó elfordulások hozzák létre az α-csavarodást, amely állandósult szerkezet. Ez az aminosavak L-téralakzatából következik. A csavarodás végbemehet ellenkező irányban is, de az ilyen szerkezetek ingatagok: az oldalláncok térben nehezen férnek el, ezért nem is maradnak meg.

Az α-csavarodás a polipeptidnek csak hosszabb-rövidebb szakaszain alakul ki: egyes helyeken megszakad, mert a hidrogénhíd nem jön létre. Ennek több oka lehet:

• A prolin gyűrűs szerkezetében a nitrogénatomnál nem áll rendelkezésre hidrogénatom, és a fordulása is korlátozott; ezért nincs gyűrűs aminosav az α-csavarvonal szerkezetben.

• Egymást taszító aminosavak között, például két arginin között (negatív töltésű az oldallánc).

• Túl nagy az oldallánc; a társulás térben nem lehetséges, ilyen a fenilalanin.

Az α-csavarodás elhelyezkedhet a fehérje bármely részén; átlagosan 12 aminosav-maradék hosszúságú, az N-vége részpozitív, a C-vég résznegatív, vagyis kétsarkú (dipole) szerkezet.

β-lemez (β sheet). Megnyúltan csavarodó peptidláncból alakul ki a lánc visszakanyarodásaival (β-fordulás). A peptidlánc ebben is csavarvonalszerű, de egy kanyarulatban csak két aminosav van, ezért lapos. A visszakanyarodás következtében néhány aminosavnyi peptidszakasz (β-redő, β strand) párhuzamosan helyezkedik el – egy irányban vagy ellentétesen (az egyiknek az N-vége és a másiknak a C-vége van egymás mellett) –, közöttük pedig hidrogénkötések képződnek, amelyek itt is a peptidkötések karbonil- és NH-csoportja között (CO…NH) jönnek létre.

képAz első ábrán a két β-szál egymással ellentétes irányú (antiparallel). A közöttük keletkező hidrogénhíd a szemben lévő peptidkötések mindegyikében kialakul, éspedig a hossztengelyére merőlegesen, mivel a CO- és NH-csoportok szemben vannak egymással. Az oldalláncok kívül helyezkednek el. A második ábrán a megnyúlt polipeptidlánc (β-szál) visszakanyarodik (β-fordulás, β-turn), és az előző szakaszával azonos irányú (parallel). A hidrogénhidak itt is keresztezik a hossztengelyt, de nem merőlegesek. Egy aminosav két szemközti aminosavval kapcsolódik.

A többszörösen egymáshoz kötődött β-szálak alakítják ki a β-lemezt, amelyből az oldalláncok kilógnak: felettük és alattuk helyezkednek el. Az egymáshoz kapcsolódó β-szálak származhatnak egyetlen polipeptidből, de kapcsolódhat hozzájuk másik polipeptid β-szála is (ábra). A β-szálak különbözősége miatt a β-lemez nem sík, hanem redőzött (pleated β sheet).

Az aminosavak oldalláncai a lemez síkja felett vagy alatt nyúlnak ki úgy, hogy a sorban egymást követő aminosavak oldalláncai ellentétes kinyúlásúak, ezért redőszerű, hajtogatott. A párhuzamos β-redőket hosszabb-rövidebb aminosavszakaszok kapcsolják össze; nemegyszer úgy, hogy a β-lemez síkja felett/alatt α-csavar szerkezeteket alakítanak ki. Az ellentétesen futó β-redőket néhány helyen aminosavas visszafordulások kötik össze; ilyen pl a hajtűfordulás* (hairpin turn), amely két ellentétes irányú β-szál között keletkezik; összesen két aminosav-maradékból áll. A β-lemez lapszerű, gyakorta hajtékolt, nagyritkán hengeres formájú, és szokásosan a fehérje belsejében van: a víztaszító peptidgerinc ugyanis szabadon van.

képβ-fordulás* (β-turn, β-reverse turn, β-bend). A polipeptid egyirányú, ezért gömbalakot csak úgy hozhat létre, hogy visszafordul. Az ilyen visszafordulás a β-fordulás, amely nagyon rövid szakasz, hajtűszerű. Ezek kapcsolnak össze két α-csavart vagy két β-szálat. A β-fordulat négy aminosav-maradékból áll. A hidrogénhíd a polipeptid visszafordulását kezdő és a harmadik aminosavát köti; ezzel rögzíti a szerkezetet (az ábrán pirossal jelölve; R = oldallánc). I-es és II-es formáját különböztetik meg. A β-fordulás sokszor a fehérje felszínén van, részt vesz a jelközvetítésekben kapcsolódási vagy felismerési helyként.

Rendezetlen fehérjeszakaszok. Ezek a fenti mintázatok egyikét sem tartalmazó részei a fehérjéknek, általában a fehérjék zömét alkotják. A fehérjék alkalmazkodó képességét (kapcsolódás más molekulával, térszerkezeti változás stb.) biztosítják, lehetővé téve a fehérjék tevékenységének szabályozását. Talán idevehető a kapocsrész (hinge region), amely változó hosszúságú hajlékony aminosavmaradék-sor, szokásosan két gomoly között. Lehetővé teszi, hogy a gomolyok elmozduljanak egymáshoz viszonyítva feladatuk ellátására. Nincs mindegyik fehérjében. A korábbi irodalomban találkozunk a Ω-hurok (Ω loop) elnevezéssel, amely rendszertelen, ismétlődő részek nélküli bonyolult szerkezetű fehérjealakzat. Megkülönböztetése nem megalapozott.

másodfeletti elemek a →fehérjegomolyok és a →fehérjemintázatok.

harmadlagos szerkezet tertiary protein structure a fehérje (egyetlen polipeptid) háromirányú (3D) elrendeződése, működőképessé válása; a hatócsoportok a felszínre kerülnek, lehetővé téve, hogy kapcsolatba lépjenek más molekulákkal. A harmadlagos szerkezet az egymástól távoli aminosavak közötti kölcsönhatások, alapvetően az aminosavak oldalláncai között létrejövő kötések (leginkább hidrogénkötések, ritkábban S–S- és ionos kötések), valamint a víztaszító hatás következménye. A harmadlagos szerkezetet tehát a peptidkötések mellett kialakuló más elektron- és nem elektronkötések hozzák létre, tartják fenn. A harmadlagos szerkezet elsősorban a gombolyagfehérjékben alakul ki, a szálas fehérjékben (→keratin, kollagén, fibroin) kevéssé kifejezett, nem különül el élesen; térszerkezetüket valamelyik másodlagos szerkezeti elem uralja. A fehérjék a harmadlagos szerkezeti formában állandók, az energia szempontjából ez a leggazdaságosabb helyzetük (native state).

A harmadlagos térszerkezetet is alapvetően az aminosavak sorrendje határozza meg, és önmagától is kialakul. A dajkafehérjék (chaperonok) elősegítik a harmadlagos szerkezet formálódását: megakadályozzák, hogy a sejtplazmában állandóan keletkező fehérjék – a harmadlagos szerkezet lassú formálódása miatt – egymással összekapaszkodjanak fehérjehalmazokká.

Lényeges, hogy a fehérjék harmadlagos szerkezete környezeti és más hatásokra (más fehérje társulása, foszforilezés stb.) felszakadhat, tehát nem állandó. Ennek biológiai jelentősége van, hiszen a térszerkezet változása, változtatása a fehérjék ki-be kapcsolásának a leggyakoribb módja, a fehérjeműködés alapvető szabályozója.

negyedleges szerkezet quaternary protein structure két vagy több harmadlagos szerkezetű polipeptid kapcsolódásából létrejövő nagymolekula (többes fehérje). Az egyes polipeptideket alegységeknek nevezzük. A negyedleges szerkezet az alegységek egymáshoz viszonyított térhelyzetét jellemzi. A polipeptidek közötti kölcsönhatásban ugyanazok a kötések (London-erők, hidrogénkötések, ionkötések és S–S híd) vesznek részt – vagyis alapvetően gyenge kötések.

A polipeptidek száma szerint megkülönböztetünk kéttagú (dimer, kettős), háromtagú (trimer, hármas), négytagú (tetramer, négyes) stb., pártagú (oligomeric proteins) és soktagú (polymer) fehérjéket. Ezek ekként, tehát kéttagúként, háromtagúként stb. hatásosak. Kapcsolódhat azonos (homo-…mer) vagy különböző polipeptidlánc (hetero-…mer).

Az összekapcsolódott polipeptidek szétválhatnak, majd újra egyesülhetnek, függően a működésüktől. A szétválást, újra egyesülést az teszi lehetővé, hogy azokon a felületeken, ahol a kötődés létrejön, egymást kiegészítő molekulák vannak – a kiegészítő láncok egymást felismerik –, és hogy a nem kiegészítő láncok között nem képződik erős kapcsolódás. A polipeptidek között tehát egy sajátságos kölcsönhatás van, amely a fehérjék működését is meghatározza, szabályozza – ez a fehérjék önrendelkező képessége.

Negyedleges szerkezetűnek tartjuk a más molekulát (hem, szénhidrát, RNS, lipid stb.) tartalmazó fehérjét is.

Találatok címszavakban (1 szócikk):

fehérjeszerkezet-kialakulás A fehérjék szerkezeti formáinak kialakulása az egyenes polipeptidfonal tekeredésével jön létre; a tekeredés ugyanis az aminosavak elmozdulásával, közeledésével jár, aminek következtében kapcsolódnak egymással, hidrogénhidakkal; hajtékolódnak*. A folyamat szakaszos: először a polipeptidnek csak egyik szakaszán alakul ki másodlagos szerkezet (köztes állapot A), majd ez kapcsolódik a polipeptid újabb szakaszával, formálva újabb szerkezeti változását (köztes állapot B) és így tovább. A polipeptid egyes szakaszai tehát együttműködnek, az egyik változása váltja ki a következőét – ezt nevezi a nemzetközi irodalom cooperative nature-nek.

A polipeptid fonal fenntartása energiaigényes, a tekeredéssel mind kisebb energiával megtartható köztes szerkezetek jönnek létre, amíg kialakul a fehérjék harmadlagos, a legkevesebb energiát követelő, biztonságos szerkezete – a fehérjéknek ez a természetes (natív) állapota.

Ahogy egyre több és több fehérje szerkezete tisztázódik, úgy válik bizonyossá, hogy a természet ugyanazokat a mintázatokat ismételte a legkülönbözőbb fehérjékben, függetlenül a tevékenységüktől. Oka könnyen érthető: jóval kevesebb genetikai irányítás és felépítési folyamat szükséges, mint ha mindegyik fehérje teljesen eltérő szerkezetű lenne. Úgymond: ez a „leggazdaságosabb módszer”. Ugyanez az elv fedezhető fel a gomolyok kialakulásában: egy-egy gomoly kialakulását újabbak követték ugyanabban a fehérjében, ezzel bővült a fehérje működése, így, és nem különállóan keletkeztek az új fehérjék. Ebből következik, és bizonyítékok is vannak, hogy bizonyos fehérjék egy-egy „őstől” származnak, családot képeznek, jóllehet a működésük messzemenően eltérő is lehet.